UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping
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We propose UVGS - an structured image-like representation for 3DGS obtained by spherical mapping of its primitives. The

obtained UVGS maps can be further unified to a 3-channel Super UVGS image to bridging the gap between 3DGS and existing image
foundation models. We show Super UVGS can compress the 3DGS assets using pretrained image Autoencoders, and for direct uncondi-
tional and conditional 3DGS object generation using diffusion models. We also present one of the first experiments on 3DGS inpainting.

Abstract

3D Gaussian Splatting (3DGS) has demonstrated supe-
rior quality in modeling 3D objects and scenes. However,
generating 3DGS remains challenging due to their discrete,
unstructured, and permutation-invariant nature. In this
work, we present a simple yet effective method to overcome
these challenges. We utilize spherical mapping to transform
3DGS into a structured 2D representation, termed UVGS.
UVGS can be viewed as multi-channel images, with feature
dimensions as a concatenation of Gaussian attributes such
as position, scale, color, opacity, and rotation. We further
find that these heterogeneous features can be compressed
into a lower-dimensional (e.g., 3-channel) shared feature
space using a carefully designed multi-branch network. The
compressed UVGS can be treated as typical RGB images.
Remarkably, we discover that typical VAEs trained with
latent diffusion models can directly generalize to this new
representation without additional training. Our novel rep-
resentation makes it effortless to leverage foundational 2D
models, such as diffusion models, to directly model 3DGS.
Additionally, one can simply increase the 2D UV resolution

to accommodate more Gaussians, making UVGS a scalable
solution compared to typical 3D backbones. This approach
immediately unlocks various novel generation applications
of 3DGS by inherently utilizing the already developed su-
perior 2D generation capabilities. In our experiments, we
demonstrate various unconditional, conditional generation,
and inpainting applications of 3DGS based on diffusion
models, which were previously non-trivial.

1. Introduction

The creation of high-quality 3D content is essential in appli-
cations like virtual reality, game design, robotics, and movie
production, where realistic 3D representations play a criti-
cal role. Typical 3D representations like Neural Radiance
Fields (NeRF) [29] are promising but require substantial
computational resources, limiting their scalability for real-
time applications. Moreover, NeRF is an implicit represen-
tation, which makes editing and manipulation challenging.
Recently, 3D Gaussian Splatting (3DGS) [19] emerged as a
compelling alternative, enabling efficient and high-fidelity
3D rendering through a large set of Gaussian primitives that
model spatial and visual properties. As an explicit represen-
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tation, 3DGS offers several advantages over NeRF. How-
ever, while 3DGS offers benefits in terms of speed and vi-
sual quality, its unstructured, permutation-invariant nature
presents significant challenges for generative tasks. Much
like point clouds, it lacks a coherent spatial structure, im-
peding its integration with conventional image-based gen-
erative models. This lack of structure and coherence among
primitives hinders the application of image-based genera-
tive models [27, 61, 67], which rely on structured data rep-
resentations.

Previous methods have tackled these challenges by trans-
forming 3DGS into structured formats, such as voxel
grids [9, 16, 61] or image-based representations like Splat-
ter Image [46] or triplanes [70]. Other approaches employ
diffusion models to directly predict 3DGS attributes [32].
These methods, while achieving impressive visual results,
often require substantial computational resources, memory-
intensive multi-view rendering, complex architectures lim-
iting their scalability and flexibility for high-fidelity gen-
eration. Generating and processing 3DGS directly by effi-
ciently utilizing modern generative models like Variational
Autoencoders (VAEs) and diffusion models is limited as the
neural networks are not permutation invariant.

To address these shortcomings, we introduce UV Gaus-
sian Splatting (UVGS), which provides a structured trans-
formation of 3D Gaussian primitives into a 2D represen-
tation while preserving essential 3D information. We use
spherical mapping [43] that inscribes Gaussian splats in a
spherical surface, and projects attributes like position, rota-
tion, scale, opacity, and color into an organized 14-channel
image-like UV map. This mapping introduces spatial struc-
ture, resolving issues of permutation invariance by introduc-
ing local correspondences between neighboring Gaussians
and global coherence across the entire 3D object. The result
is a representation that functions as a “3D representation”
structured in a 2D map format, enabling compatibility with
powerful image-based neural network architectures.

While UVGS introduces structure into 3D Gaussian
Splatting, its full 14-channel attribute-specific representa-
tion presents challenges for direct integration with pre-
trained 2D generative models, as these models typically ex-
pect a simpler, image-compatible data. Each of its heteroge-
neous attributes—position, color, and transformation—has
its own distinct distribution and resides in a separate fea-
ture space, making it challenging to represent the 3D object
in a unified shared space. To address this, we introduce
Super UVGS, a compact 3-channel representation that uni-
fies these diverse attributes into a cohesive format. Using
a carefully designed multi-branch mapping network, Su-
per UVGS consolidates the distinct attribute spaces into a
shared feature space, enabling a more collective representa-
tion of the object. This unified transformation not only fa-
cilitates zero-shot compatibility with pretrained 2D models

but also optimizes memory usage and computational effi-
ciency, making Super UVGS highly practical for large-scale
3D tasks. Unlike previous approaches that use Triplanes,
voxels, occupancy grid, neural fields etc. and require spe-
cialized 3D architectures to train on 3D data, UVGS ef-
fortlessly leverages widely available pretrained 2D foun-
dational models. This zero-shot generalization capability
allows UVGS to fully benefit from priors learned in 2D do-
mains from large amount of data, improving both flexibility
and scalability. To sum up our main contributions are:

* Efficient Structured Representation of 3DGS: We present
UVGS, an image-like representation that solves permuta-
tion invariance and unstructured nature of discrete 3DGS
through spherical mapping, making direct feature extrac-
tion possible by organizing unordered points into a coher-
ent 2D representation compatible with 2D models.

* Compact and Scalable Super UVGS Representation: To
address scalability while dealing with large scale 3DGS
points and enabling the direct integration of pre-trained
2D foundation models, we introduce Super UVGS - a
low-dimensional version of UVGS maps that retains high
fidelity features while reducing memory overhead.

* Diverse 3D Applications: Our approach unlocks seamless
integration of 3DGS with pre-trained 2D foundation mod-
els for various tasks, including unconditional and condi-
tional generation of 3DGS.

2. Related Work

3D Generative/Reconstruction Models for Objects: Gen-
eration or reconstruction of 3D assets has been a long stand-
ing task [4, 24, 28, 30, 31, 35, 39, 40, 45, 47, 49, 56, 60].
Previous reconstruction approaches like NeRF [2, 29] are
often slow and do not provide a defining geometry [6, 13,
18,23, 26,28, 36, 40, 54, 66, 68]. Advancements in the field
led to the emergence of explicit voxel grid based represen-
tations that encode colors and opacities directly [9, 33, 51].
These approaches achieve significant speed ups compared
to the NeRF based approaches, but they can’t produce high
fidelity assets due to the low resolution of voxel grids.
On the other hand, triplane representation [15, 44, 53, 69]
provides a trade-off between the quality and memory uti-
lization. Another line of work [11, 59] splits the input
mesh into different patches and simplifies the object gen-
eration problem to an image generation problem. How-
ever such methods rely on either cutting through the mesh
to create a geometry image [11] or rely on an existing
UV representation of the geometry and utilize subset of
existing UV islands [59] resulting in loss of details. Re-
cently, there has been a notable advancement in 3D Gaus-
sian Splatting (3DGS) for the representation of objects and
scenes leding to the emergence of 3DGS showcasing im-
pressive real-time results in reconstruction and generation
tasks [16, 19, 22, 34, 48, 55, 57, 58, 60, 62, 69]. Recent
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Figure 2. The input 3DGS object is first converted to UVGS maps through spherical mapping. We use a multibranch forward mapping
network to convert the obtained 14-channel UVGS to a compact 3-channel Super UVGS image. This represents the 3DGS object in a
structured manner and can be used with image foundation models for reconstruction or generation. The Super UVGS is mapped back to
UVGS through branched inverse mapping, which in turn can be reconstructed back to the 3DGS object through inverse spherical mapping.

advances in the 3D generative models for asset synthesis
using the existing geometries like NeRF, voxel grids, or tri-
plane geometries [3, 14, 48, 58, 62, 69] leverage genera-
tive models [17, 41] and the existing 3D datasets [5, 10].
However, most of the works employing 3DGS or other rep-
resentations use multiview rendering and Score Distillation
Sampling (SDS) to achieve convincing generation and re-
construction capabilities [8, 35]. These approaches demand
high memory and compute resources and are often quite
slow in optimizing due to per scene optimization.

Giving Structures to Discrete Gaussians: Although,
3DGS has led to breakthrough in the reconstruction field by
demonstrating superior performance in multiple domains,
the generation of 3DGS directly remains challenging due
to its discreteness and unstructured nature [61, 67]. These
characteristics present substantial challenges when integrat-
ing them with conventional computer vision models, like
Autoencoders and generative models [67]. The research in
direct learning of trained 3DGS primitives is largely un-
explored [27]. Some efforts attempt to address this by
directly predicting 3DGS attributes using diffusion mod-
els [32] while others like Splatter Image [46] project Gaus-
sian objects into image-based representations through direct
3D-unaware projection. These methods struggle with main-
taining multiview consistency, as the model only infers seen
poses correctly, while hallucinating for unseen poses.

Concurrent works [16, 61] follow the voxel-based repre-
sentations to transport Gaussians into structural voxel grids
with volume generation models for generating Gaussians.
However, these methods are computationally expensive for
high-resolution voxels, face difficulties in preserving high-
quality Gaussian reconstructions due to information loss
during voxelization. DiffGS [67] tries to solve the above

issues by proposing three continuous functions to represent
3DGS. However, it is limited to only category-level gener-
ation and learning generic probability functions for all the
categories poses significant compute and design challenges.
In contrary, we introduce an efficient way to give struc-
tures to discrete Gaussians by taking inspiration from the
developments in 3D graphics. Our method does not require
any learning to map an unstructured set of Gaussians to
this efficient and structured representation (termed UVGS).
The proposed representation provides local and global cor-
respondence among different Gaussian points making the
widely available existing computer vision frameworks learn
and extract underlying features from them.

3. Methodology

Preliminaries: 3DGS represents an object or a scene with
a collection of Gaussians primitives to model the geom-
etry and view-dependent appearance. For a 3DGS set,
G = {g;}},, representing an object with N individual
Gaussians, the geometry of the i*" Gaussian is explicitly
parameterized via 3D covariance matrix ¥; and it’s center

1 NTs =1/,
o € R? as: gi(z) = e(m2(@=0) 2 (2=04)) where,
the covariance matrix X; = 7;s;57 1} is factorized into

a rotation matrix r; € R* and a scale matrix s; € R3.
The appearance of the ¢ — th Gaussian is represented by
a color value ¢; € R? and an opacity value o; € R. In
practice, the color is represented by a series of Spherical
Harmonics (SH) coefficients, but for simplicity, we repre-
sent the view-independent color by just RGB values. Thus,
a single Gaussian can be represented by a set of five at-
tributes as g; = {0y, 7i, Si, 04, Ci} € R4, and the entire
3DGS can be represented by a set of IV such Gaussians as:
G = {{O’Z‘, Tiy Siy Og, Ci}}i]\;y



3.1. Spherical Mapping

3DGS is represented as a permutation invariant set with
no structural correspondence among different Gaussians g;,
making it challenging to extract meaningful features from
this set containing a few hundred thousands of them using
neural networks. To address this, we introduce a novel rep-
resentation that gives structure to this unstructured set of
points and solves the permutation invariance issue for faster
and better feature extraction. We propose to accomplish this
by employing spherical mapping to map the 3DGS primi-
tives to an image-like representation that is both invariant to
random shuffling of 3DGS points and well structured.

We begin the mapping by inscribing the 3DGS object
into a sphere with the same center as the object in the canon-
ical space. Inscribing a 3DGS object into a sphere involves
enclosing the object within a sphere. This begins by deter-
mining the geometric center of the object. The next step is
to calculate the radius of the sphere, which is achieved by
measuring the Euclidean distance from the center to the far-
thest point on the object. The radius of the sphere is defined
such that the sphere fully encloses the object. The sphere
acts as a bounding volume for the entire object.

We consider each Gaussian g; in 3D to be centered at
the mean position represented by o; with Cartesian coor-
dinates (x;,y;,2;). The aim is to get the spherical coor-
dinates (p;, 0;, ¢;) for each Gaussian g;. To do so, we
calculate the azimuthal 6; and polar ¢; angles for each g;
along with the distance from the origin to the point, p;. The
spherical radius is defined as p; = \/z? + y? + 22, the az-
imuthal angle as 6; = tan™"'(y;, ;), while the polar angle
as ¢; = cos~!(z;, p;). The azimuthal and polar angles are
then normalized, such that we can map them on a 2D UV
map of M x N dimensionality with 14-channels. 6; and ¢;
are converted to degrees and mapped to UV image coordi-

nates: 0; scaled = L%ﬂ-& X MJ s Bi scaled = \\% X NJ Each
channel in the UV map stores 3DGS attributes, including
{oi, Tiy Siy 04, C;} € R4, We refer this 14-channel UV
map as UVGS, U € RMXNx14 defined as:

U[¢1 scaled s 0; scaled s :] =

This transformed UVGS representation provides spatial
coherence and solves the permutation invariance problem as
any random arrangement of points will now map to the same
UVGS representation U. It should be noted that this kind of
transformation will also preserve the spatial correlation be-
tween the Gaussian points in 3D and transform them to 2D
UV maps by mapping them to neighboring pixels. This pro-
vides both the local level correspondence among the neigh-
boring Gaussians and the overall global correspondence for
the object. Thus, solving the unstructured and discreteness
problems. This enables standard neural network architec-
tures (e.g. CNNs) to effectively capture correlations among
neighboring Gaussians for efficient feature extraction.
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Figure 3. Dynamic Selection. In spherical mapping of 3DGS
points to UV maps, multiple points may map to the same pixel,
creating a many-to-one issue. Our Dynamic Selection approach
addresses this by retaining the attributes of the point with the high-
est opacity per pixel on the same ray.

To further unify the extracted position (o), transforma-
tion (7, s), and color (¢, 0) maps in a same feature space and
use the existing image foundation models, we map the ob-
tained UVGS U € RM*N*14 fyrther to a 3-channel image
S € RM*XNx3 (termed as Super UVGS), using a Convo-
lutional Neural Network (CNN). A multi-branch forward
mapping network is employed to map U € RMXNx14 (o
the 3-channel Super UVGS S € RM*N >3 We provide all
technical details in Sec. 3.3 and the supplementary material.

The Super UVGS representation effectively retains all
the details of 3DGS attributes and can be directly uti-
lized with existing widely available image-based models.
We demonstrate this by showing perfect reconstruction of
3DGS object from Super UVGS image in the experiments
section. This semantically structured representation S of-
fers both local and global correspondence in representing
Gaussian attributes and needs relatively less storage.

3.2. Dynamic GS Selection and Multiple Layers

When projecting 3DGS points to UV maps using spheri-
cal mapping, multiple points may map to the same pixel
in UV space as shown in Fig. 3. Two 3DGS points (g1)
and (g2) map to the same pixel on UV map (FP,) causing
many-to-one mapping issue. To address this, we propose a
Dynamic Selection approach where each UV pixel retains
the 3DGS attribute with the highest opacity intersecting the
same ray. Using the same example in Fig. 3, if opacity o;
of Gaussian g; is less than opacity oy of go. Then only g
will be stored in the UV map at pixel P,. We observed that
this method helps maintain the geometry and appearance
of the 3DGS object while resolving many-to-one mapping
issues with minimal quality loss. For more complex ob-
jects or real-world scene representation, we stack multiple
such layers of UV maps, where each UVGS pixel now holds
attributes of the top-K opacity values of 3DGS primitives.
This can be accomplished by inscribing the 3DGS object
inside multiple spheres where each sphere maps the 3DGS
attribute corresponding to the top-K*" opacity value along
the same ray. More details on this are presented in the sup-
plementary. To show the effectiveness of proposed UVGS



Figure 4. Complex object reconstructions (K=4) using pretrained
image-based autoencoder.

maps in capturing the intricacies of a complex objects, we
used a pretrained image based autoencoder to reconstruct
objects using a 4 layer UVGS as shown in Fig. 4.

3.3. Mapping Networks

Our goal is to bring the extracted UVGS maps to a com-
mon feature space to better represent the object collec-
tively and to make the 14-channel UVGS representations
U € RMXNx14 ywork with the widely available image
based foundation models. To accomplish this, we map it
to a 3-channel image which can be easily processed by the
existing architectures while also maintaining the spatial cor-
respondence. We design a simple yet effective multi-branch
CNN to extract features from different UVGS attributes and
map them to a 3-channel feature-rich image, termed Su-
per UVGS. The structured UVGS maps provides local and
global features that can be learned by a CNN.

Forward Mapping The first layer is a set of three map-
ping branches for position, transform, and appearance
(¢];, ¢§, (bf;) respectively. We refer to them as posi-
tion, transformation, and appearance branch. The position
branch takes the mean position (o) as an input and pro-
cesses it to give a position feature map Mp. Similarly, the
transformation branch takes the rotation () and scale (s)
together to generate another feature map M. The last, ap-
pearance branch takes the color (c) and opacity (o) together
to produce another feature map M 4. All the three features
maps from position, transformation, and appearance branch
are concatenated to get a final feature map, before passing
them to the next module, called the Central Branch. The
central branch (q%) is composed of multiple hidden Convo-
lution layers, where each layer is followed by BatchNorm
and ReLu activation. The last layer of the central branch
is activated using tanh to ensure the Super UVGS does
not take any ambiguous value resulting in gradient explo-
sion or undesired artifacts. The obtained Super UVGS S
representation squeezes all the 3DGS attributes to a 3 di-
mensional image while also maintaining local and global
structural correspondence among them.

Inverse Mapping We design an inverse mapping network
that aims to map the obtained 3-channel Super UVGS im-
age S € RM>XNx3 pack to the UVGS maps to obtain each
of the five different 3DGS attributes {0, 7, s, o, c¢}. The
inverse mapping network simply follows the forward map-
ping network architecture in the reverse order, where at
first, we put the Central Branch (¢;¢) followed by attribute
specific position, transformation, and appearance branches

(dip, diT, ®ia). We provide more details on mapping net-
work in the supplementary.

Branched mapping layers: The rationale behind using
branched mapping layers in both forward and reverse map-
ping networks is to prevent the incompatibility issues aris-
ing due the the different value distribution of 3DGS at-
tributes. Note that the disparate distributions of values
within each set of attributes in 3D Gaussian Splatting, (i.e.,
mean position, transformation, and color), pose a chal-
lenge to the model when processed collectively. For in-
stance, neighboring Gaussians in UVGS maps show smooth
changes in position and color values but typically have large
variations in rotation, scale, and opacity values. This re-
sults in gradient anomalies and slow convergence. To ad-
dress this, we propose a multi-branch network architecture,
where attribute-specific branches implicitly learn to process
these distinct attribute specific properties, focusing on their
unique features before passing them to the central branch.
The central branch receives a concatenated stack of pro-
cessed attributes and exploits the correlation between them
by extracting local feature correspondences. This informa-
tion is then mapped to a 3-channel Super UVGS image, ef-
fectively capturing the complex relationships between the
various attributes. This approach enables our network to
manage diverse attribute distributions, resulting in faster
convergence, improved accuracy, and specialized process-
ing for each attribute set.

Reconstruction Losses: Since the obtained UVGS maps
have both local and global features, we opted for image-
based losses to train the overall architecture. We use a set of
Mean Squared Error (MSE) and Learned Perceptual Image
Patch Similarity (LPIPS) [65] between the obtained UVGS
from spherical mapping U and the predicted UVGS U from
inverse mapping network. We calculate the LPIPS loss over
four attributes of 3DGS including mean position (o), view
independent color (c), scale (s), and rotation (). The over-
all LPIPS loss for UV maps can be written as a linear sum
of individual attribute loss terms as:

LUV—lpips = ‘CO' + ‘cs + £r + ‘Cc (2)
The overall loss function for the training can be written as:

Loyvgs = Lmse+A.Luv_ipips Where A is a scalar and varied
from O to 10 during the course of training.

4. Experiments

3DGS Dataset and UV maps To train the mapping net-
works and learn a latent space for unconditional and con-
ditional sampling, we need large amount of 3DGS assets.
However, there’s a lack of such a large-scale dataset for high
quality 3DGS assets. To this end, we create a custom large
scale dataset by converting the Objaverse [10] meshes into
3DGS representation '. We start by designing a scene of 88

I'Sketchfab data was filtered out of training data due to its license
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Figure 5. Figure shows a wide variety of high-quality unconditional generation result from our method using Latent Diffusion Model. We
train an LDM to randomly sample Super UVGS images from random noise. The Super UVGS can be converted to 3DGS object using
inverse mapping network and inverse spherical projection. The unconditional generation model was trained on Objaverse dataset.

cameras in a canonical space and use it to capture Objaverse
objects from various angles covering all of the object views.
The 88 rendered views from different angles are then used
to train a 3DGS for 10K iterations using [19]. This way,
we create a high-quality and large-scale 3DGS dataset of
~400K objects and scenes from Objaverse. We only use
static scenes or objects from Objaverse. After fitting all the
object to 3DGS representation, we convert the objects to
the corresponding UV maps (i.e., UVGS) through Spheri-
cal Mapping as illustrated in Fig. 2. For the course of our
experiments, we only map the objects to a single layer UV
maps as it was sufficient to represent the general purpose
Objaverse objects with minimal quality loss. Through map-
ping, we gathered a UVGS dataset of ~400K maps. We
fix the size of the UVGS maps to 512 x 512. Through our
experiments, we found that UV maps of size 512 x 512 are
sufficient to represent objects in our dataset and capable of
storing upto 262 K unique Gaussians. Table | compares 1-4
layer UV maps. We also did experiments on ShapeNet [5]
cars dataset for evaluation purposes.

Baselines & Metrics: To evaluate the quality of recon-
structed 3DGS objects from both Super UVGS image
and Autoencoder latent space to 3D, we use PSNR and
LPIPS [64]. The aim is to convert the given 3DGS object
to UVGS, and then to Super UVGS, and further to Autoen-
coder’s latent space and calculate the metrics from the re-
constructions at every step to prove the proposed method
doesn’t significantly affect the quality of reconstructions,
while also providing a structurally meaningful representa-
tion that is much compact and easier to use with existing
image based models. We compare the generational capabil-
ities of our method against various conditional and uncon-
ditional SOTA 3D object generation method including the
ones using multiview rendering for optimization DiffTF [3],
Get3D [14], methods trying to give structural representa-

Table 1. PSNR and LPIPS comparison for various reconstruction
methods using UVGS and Super UVGS representations on Obja-
verse Cars and Full datasets. AE, VAE, VQVAE are pretrained
image based models. K is the number of UVGS layers used. We
also report the compression % (CP) compared to the fitted 3DGS.

Method |PSNR(C/F) |LPIPS(C/ F)| CP(%)
3DGS 34.6/342 | 002/002 | 0
UVGS (@K=1) 31.3/31.1 | 0.06/0.06 | 53.0
UVGS (@K=2) 32.8/31.9 | 0.04/0.05 | 45.6
UVGS (@K=4) 34.2/332 | 0.02/0.03 | 33.3
Super UVGS (@K=1)| 31.2/31.1 | 0.07/0.08 | 89.7
AE (@K=1) 30.9/30.8 | 0.07/0.09 | 99.5
VAE (@K=1) 30.6 /30.9 | 0.07/0.09 | 99.5
VQVAE (@K=1) 30.3/30.1 | 0.08/0.10 | 99.7

tion to Gaussians, GaussianCube [61], and general purpose
SOTA large 3D content generation models like DreamGaus-
sian [48], LGM [50], and EG3D [4]. We also compare the
quality of our generation results using FID and KID.
Mapping Network Training Details We train the for-
ward and inverse mapping networks to project the ob-
tained UVGS maps U € RM*Nx14 t5 Super UVGS image
S € RM*Nx3 and back to the reconstructed UVGS maps
U € RM*Nx14 e provide an in-depth discussion of all
implementation details in the supplementary material.

4.1. UVGS AutoEncoder and 3DGS Compression

The obtained Super UVGS image is a structurally mean-
ingful representation that can have various applications in
the generation and reconstruction of new 3D assets as it
contains features that can be learned by the existing image
based models. Through our experiments, we show that a 3-
channel Super UVGS image can be directly reconstructed
using a pretrained image based Autoencoders or VAEs with-
out any fine-tuning. We tested on three different models in-



Figure 6. Comparison of unconditional 3D asset generation on the cars category with SOTA methods.
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produces low-quality, low-resolution cars lacking detail. While Get3D [14] achieve higher resolution, it suffers from 3D inconsistency,
numerous artifacts, and lacks 3D detail. Similar issues are found in GaussianCube [61] along with symmetric inconsistency in the results.
In contrast, our method generates high-quality, high-resolution objects that are 3D consistent with sharp and well-defined edges.
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Figure 7. We compare the performance of our model against var-
ious SOTA methods for text-conditional object synthesis. Our
method not only generates high-quality assets for simpler objects,
but also for complicated objects with intricate geometry.

cluding image AE, KL-VAE [20], VQVAE [52] and each
performed quite well without any significant quality loss.
The reconstruction PSNR and LPIPS values are presented
in Table I. This means we can now leverage the powerful
compression capabilities of image based Autoencoders to
compress the storage requirements of 3DGS by more than
99%. We have shows the storage comparison results in Ta-
ble 1. It is interesting to note that the Super UVGS rep-
resentation itself can be used to compress the memory re-
quirement for storing 3DGS object by up to 89.7%.

4.2. Unconditional & Conditional Generation

We aim to show the effectiveness of Super UVGS represen-
tation for directly generating 3DGS objects from a learned
latent space. We consider Super UVGS images as a com-
pact and structured proxy for representing 3DGS objects
as it maintains the 3D object information while also pro-
viding learnable features. The existing methods fail to di-
rectly generate a large number of Gaussians (e.g. 100K+)
to represent objects with sufficient quality either due to the
lack of 3D generative model architectures that support such
large number of unstructured points, or due to the lack of a
large 3DGS dataset [32, 46, 50, 61, 69]. We leverage the

Super UVGS representation and use the existing 2D im-
age generative models like Diffusion Models [17] for this
task. Specifically, to train a generative model capable of
randomly sampling new high-quality 3DGS assets for vari-
ous downstream tasks, we use an unconditional Latent Dif-
fusion Model (LDM) [41] on the obtained Super UVGS im-
ages. As illustrated in Section 4.1, we can use a pretrained
image VAE to map the Super UVGS image to a latent space
and reconstruct back. Hence, we only train a LDM on the
latent space. More implementation details are provided in
the supplementary.

Unconditional LDM: To design a generative model capa-
ble of randomly sampling new high-quality 3DGS assets
for various downstream tasks, we train an unconditional
LDM [41] on the learned Super UVGS images. Follow-
ing [38, 41, 63], we use DDIM [ 17] for faster and consistent
sampling with up to 1000 time steps used in the forward dif-
fusion process, and 20 during denoising. Once trained, the
model is used to randomly sample Super UVGS images,
resulting in high quality 3DGS assets through inverse map-
ping. Results are presented in Fig 5. We demonstrate that
our method inherently learns to generate multiview consis-
tent images due to the powerful Super UVGS representation
unlike most prior works using rendering-based losses.

Conditional LDM: Similar to unconditional generation,
we also trained a text-conditioned LDM following the
s [38, 41, 63] pipeline and using the predicted text for
our dataset. The trained model can be used to generate
high-quality text-conditioned 3DGS assets that are multi-
view consistent. The results are demonstrated in Fig 6.

The above experiments proves the effectiveness of our
proposed Super UVGS representation in 3D object synthe-
sis using widely available 2D image models. It also high-
lights that this compact 3-channel Super UVGS representa-
tion stores not just the spatial correspondence among differ-
ent pixels, but also the rich 3D information of the objects.
This way, we can easily convert a 3D asset generation prob-
lem into a 2D image generation problem without the use of
any complex 3D architecture to handle large amount of un-
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Figure 8. 3DGS Inpainting: We present one of the first inpainting
results on 3DGS directly leveraging the Super UVGS images and
the denoising capabilities of diffusion models.

structured and permutation invariant 3DGS primitives, and
neither relying upon computationally expensive multiview
rendering or SDS loss. Baseline comparison for uncondi-
tional and conditional generation is presented in Table 2.

4.3. 3DGS Inpainting

Leveraging the powerful Super UVGS representation, we
present in Fig. 8 one of the first experiments on inpaint-
ing 3DGS directly without using any multiview rendering
or distilling information from diffusion models. We try to
recover the missing Gaussians by leveraging the denoising
capabilities of LDM and trying to predict the missing corre-
sponding parts of the Super UVGS image. We believe, this
can have potential applications in sparse view reconstruc-
tion. More details are given in the supplementary.

4.4. Ablation Studies & Discussion

We conduct exhaustive ablation studies to justify some
of our framework’s design choices including the effect of
branching in mapping networks, the use of single layer
UVGS maps, and the resolution of UVGS maps. We
performed our experiments on our custom Objaverse [10]
3DGS dataset and evaluate the performance of our model
in terms of PSNR, SSIM, and LPIPS. The results are pre-
sented in Table 3. From the table, it can be seen that by us-
ing four layers of UVGS maps (K=4), we can almost match
the reconstruction quality of fitted 3DGS results, while we
realized that simply with a single layer UVGS, we are able
to maintain the overall geometry and appearance of the ob-
ject for our dataset with a PSNR of more than 30. We also
compared the reconstruction performance of our method
with and without using branching in the mapping network.
It can be clearly seen that using branching network sig-
nificantly increases the reconstruction quality from Super
UVGS space. The main reasoning behind this is the spe-
cialization of attributes that the branching provides to indi-
vidually process each attribute first.

Table 2. We compare the FID and KID of unconditional gener-
ation using the current SOTA methods on 20K randomly gener-
ated samples from each method and ours. We also compare our
method against SOTA text-conditioned generation frameworks on
CLIP Score for 10K generated objects from each method.

Unconditional Generation Text-Conditioned Generation

Method |FID | KID || Method |CLIP Score 1

Get3D [14] 53.17 4.19 |||DreamGaussian [48] 28.51
DiffTF [3] 84.57 8.73 |||Shap. E [7] 30.53
EG3D [4] 74.51 6.62 ||[LGM [50] 30.74
GaussianCube |34.67 3.72 |||GaussianCube [61] 30.34
UVGS (Ours)|26.20 3.24 |||UVGS (Ours) 32.62

Table 3. We present quantitative ablation study for number of
UVGS layers (K), UVGS map resolution, and the effect of branch-
ing in mapping network on the Objaverse 3DGS dataset.

Method |PSNR LPIPS||UVGS Size |PSNR LPIPS
UVGS @K =1| 31.1  0.06 ||512 x 512 (@K =1)| 31.1  0.08
UVGS @K =2| 31.9 0.05 [256 x 256 (@K =1)| 282 0.23
UVGS QK = 4| 33.2 0.03 ||Without Branching 27.8 0.31

Limitations & Future Work: While single layer UVGS
images can recover the geometry of the object, they some-
times suffer in terms of appearance and the generated ob-
jects might look washed out. We believe this can be solved
by using a multi-layer UVGS maps. Similarly, the single
layer UVGS map is limited to representing simpler every-
day objects, and may not be sufficient to represent highly-
detailed and complex objects or scenes. In the future, we
want to extend this framework to learn features for real-
world scenes and complex objects like a human head with
multi-layer UV mapping. We also want to make this repre-
sentation more efficient by better utilizing the empty pixels
of UVGS maps and Super UVGS images while also main-
taining the underlying features and 3D information.

5. Conclusion

We introduced a novel method to solve the underlying is-
sues with 3D Gaussian Splatting (3DGS) that prevent the
direct integration of them with the large number of existing
image foundational models. We proposed UVGS - a struc-
tured representation for 3DGS obtained by spherical map-
ping of 3DGS primitives to UV maps. We further squeezed
the multi-attribute UVGS maps to a 3-channel unified and
structured Super UVGS image, which not only maintains
the 3D structural information of the object, but also pro-
vides a compact feature space for 3DGS attributes. The ob-
tained Super UVGS images are directly integrated with the
existing image foundational models for 3DGS compression
and unconditional and conditional generation using diffu-
sion models. Leveraging these Super UVGS images, we
showed one of the first inpainting experiments on 3DGS.
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UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping

Supplementary Material

Our supplementary material contains a wide range of infor-
mation that cover implementation details for our networks
and training procedures, as well as a large variety of quali-
tative results.

Supplementary Video: We refer the interested reader to
the supplementary video where we provide an overview of
how our proposed approach works as well as a plethora of
qualitative results across different tasks.

1. Spherical Mapping

Spherical Mapping: Spherical mapping [43] is a fun-
damental technique in computer graphics that is used to
project 3D meshes onto a 2D map generally for texture map-
ping, where a 2D image is wrapped around a 3D object,
such as a cylinder or a sphere. However, cylindrical map-
ping fails to capture the top and bottom parts of the object
in the same UV map, and can introduce distortions for ob-
jects that extend far in the Z-direction. Hence we opted for
spherical mapping the process of which involves convert-
ing 3D Cartesian coordinates (z,y, z) into spherical coor-
dinates (p, 6, ¢) and then mapping these onto a 2D plane.
Algorithm [1] explains spherical unwrapping in detail for a
single layer(K=1). The same process can be repeated for
multiple layers, by keeping a track of opacity values.

Thresholding Opacity 3DGS use multiple points with
varying opacity values to represent an object from any spe-
cific viewpoint. However, it is oftentimes noticed that many
of these points have very low opacity values and do not con-
tribute to the object’s overall representation or appearance.
We filter these points using a threshold opacity value with
no impact on the object’s overall geometry and representa-
tion to reduce the number of tractable primitives.

Dynamic GS Selection and Multiple Layers When pro-
jecting 3DGS points to UV maps using spherical mapping,
multiple points may map to the same pixel in UV space as
shown in Fig. 3. The two 3DGS points (g;) and (g2) map to
the same pixel on UV map (P,) causing many-to-one map-
ping. However, the UV map can only hold a single 3DGS
primitive at any given pixel. To address this, we propose
a Dynamic Selection approach where each UV pixel retains
the 3DGS attributes with the highest opacity intersecting the
same ray from the centroid to the farthest 3DGS primitive
along the ray. Using the same example in Fig. 3, if opacity
o1 of Gaussian g is less than opacity o5 of g5. then only g
attributes will be stored in the UV map at pixel P,. Through
multiple testing, we observed that this method helps retain
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Algorithm 1 Spherical Unwrapping for UVGS map (K=1).

Require: 3DGS € R™, (M,N)€Z, K =1

Ensure: position(c), color(c), scale(s) € R™"*3

Ensure: rotation(r) € R"**, opacity(o) € R™*1
1: Extract zyz(o), opac(o) from 3DGS

Spherical radius, 7 < /22 + y2 + 22

Azimuthal Angle, § + tan™!(y, )

Polar Angle, ¢ < cos™1(z,7)

(60, @) « (deg(0) + 180, deg(¢))

Oy < round((0/360) x M)

¢uv < round((¢/180) x N)

Initialize UV};,qp < zeros(M, N, 14)

Initialize UV, pq. < zeros(height, width)

for all (¢, P, xyz,0) in (Byv, puv,3DGS, opac) do

if 0 < P < height and 0 < t < width then

R A BN A o

—_ =
_= o

12: if UViap P, t] is O then

13: UVinap| P, t] < 3DGS|ind]
14: UVopac|Pit] < o

15: else

16: if 0 > UV,pqac[ P, t] then

17: UVinap| P, t] < 3DGS]ind]
18: end if

19: end if

20: end if

21: end for

22: return UV,

the overall geometry and appearance of the 3DGS object
while resolving many-to-one mapping issues with minimal
quality loss.

This method with single layer is applicable to most of the
objects in our dataset. However, this might fail in the case
of more complex objects or real-world scene representation.
There could be multiple layers of Gaussians holding higher
opacity and contributing to the overall scene’s appearance
or geometry, and even partial or full occlusions. To better
represent such objects and scenes and to prove the effec-
tiveness of UVGS, we stack multiple layers of UV maps,
where each UVGS layer holds the 3DGS primitives of the
top-K'" opacity value intersecting the same ray. This can
be accomplished by inscribing the 3DGS object inside mul-
tiple spheres where each sphere maps the 3DGS attribute
corresponding to the top-K*"* opacity value along the same
ray. To show the effectiveness of proposed UVGS maps in
capturing the intricacies of a complex real-world scene, we
use a 12 layer UVGS map to reconstruct the real-world 3D
scenes. The results are presented in Fig. 8. We also com-
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Figure 1. In this figure, we show the qualitative results of reconstructing 3DGS object using pretrained Image Autoencoder (A) via Super
UVGS. We obtain UVGS maps (U) through spherical projection of 3DGS objects, followed by using forward mapping network to get
Super UVGS (S). A pretrained AE is used to reconstruct Super UVGS (S’), which can be converted to UVGS maps (U’) through inverse
mapping network. At last, through inverse spherical mapping, we can get predicted 3DGS object which has the same appearance and

geometry as the input object with minimal loss.

Figure 2. Complex object reconstructions (K=4) using pretrained image-based autoencoder.

pare the effect of increasing the number of UVGS layers in
representing a real-world 3D scene in Fig. 3 In future work,
we want to extend this ability for potentially many applica-
tions in 3D dynamic scene reconstructions using video dif-
fusion models, and the segmentation or tracking of objects
in 3DGS scenes as the features in the UVGS maps can be

easily processed with the neural networks and tracked over
time.

2. Mapping Networks

Forward Mapping Details: This process is defined as:

Fhap = L[05(0)] [#7(Ir, s)] [¢ [0, ] ] 3)
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Figure 3. Reconstruction of a real-world scene for different K values. Smaller K results in many-to-one issue, hence lacking details.

The central branch (qﬁé) is composed of 2L hidden Con-
volution layers. The first L hidden convolution layers in-
crease the feature dimension at each step, while the last L
layers does the inverse and squeezes the high-dimensional

feature maps to 3 channels to output Super UVGS image
S e ]RM XN ><3.

S = tanh( ¢L[fl.,) ) € REWS @)
Each CNN layer is followed by a batch normalization
layer and ReLU activation both in multi-branch and central
branch modules. The last layer of central branch is acti-
vated using tanh to ensure the Super UVGS doesn’t take
any ambiguous value resulting in gradient explosion or un-
desired artifacts. The obtained Super UVGS S representa-
tion squeezes all the 3DGS attributes to a 3 dimensional im-
age while also maintaining local and global structural cor-
respondence among them.
Inverse Mapping: The first L layers in the Central branch
increases the feature dimension and the last L layers re-
duces them to obtain a combined feature map.

7 —

map

$o(S)

The final layer is a set of 3 branches projecting the fea-
tures to position, translation, and appearance attributes, re-
spectively.

fo =05 (fnap)]
rs = (07 (frap)]
foe = [0 (fmap)]

Similar to the forward mapping network, each layer in
the central branch and attribute specific branches is fol-
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lowed by batch normalization and Relu(.) activation. The
last set of branch layers are activated using tanh(.) to pre-
vent ambiguous values resulting in gradient explosion or re-
construction artifacts.

U = tanh( [[f] [} [£s.]])

Losses Details: We used MSE to focus on pixel-wise dif-
ference during the training. We solely used MSE for a few
iterations to make the mapping networks learn the overall
structural representation of the UVGS map using:

1 & .
Emse = E z;(Uz - Uz)2
1=

After training the model for few iterations using MSE, we
introduce the LPIPS loss giving same weight to both MSE
and LPIPS over a few iterations. We observed that increas-
ing the weight value of LPIPS over the iterations resulted in
better and faster convergence results.

»Clpips = Zwl ”¢l(w> - ¢l<y)”2’
l

(&)

(6)

where ¢;(z) and ¢;(y) are feature maps extracted from pre-
trained layers of AlexNet[64].

Mapping Training Details: Before training the models,
we normalized the different attributes in UVGS to [—1, 1]
using the same normalization functions as used in 3DGS
paper[19]. The normalized UVGS maps are used to train
the multi-branch forward and reverse mapping networks us-
ing MSE and LPIPS loss. We trained the mapping networks
on 8 x A100 (80G'B) GPUs with a Batch Size of 96 for 120
hours using Adam optimizer with a learning rate of 6e — 5
and set 51 = 0.5 and B3 = 0.9 with weight decay of 0.01.
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Figure 4. Forward Mapping Network for UVGS to Super UVGS mapping. The inverse mapping network follows just the inverse of this
architecture with each attribute-specific branch now followed by tanh() at the end.

We set the A for LPIPS loss to be 0 for the first 24 hours
of training and gradually increased it from 1 to 10 for the
remaining training in a step of 1.

2.1. Interpolation with UVGS

We show that the proposed SuperUVGS representation can
be used to perform local editing and interpolation directly
in the UV domain. We can perform edits like swapping the
parts of one object from the other, cropping the 3D object,
or merging two objects together simply with the SuperU-
VGS images without any learning based method. The re-
sults are demonstrated in Fig 5.

3. LDM - Unconditional and Conditional Gen-
eration

Caption Generation To generate the relevant text captions
for the objects in our dataset for conditional generation, we
leverage CLIP [37], BLIP2 [21], and GPT4 [1] very similar
to [25]. Specifically, we use BLIP2 to generate IV different
captions for randomly selected 20 views from the 88 ren-
dered views for each object in the dataset. CLIP encoders
are used to encode and calculate the cosine similarity be-
tween the N generated caption per view and the correspond-

ing 20 views. The caption with max similarity is assigned to
that particular view, resulting in 20 different captions for the
same object. We now use GPT4 to extract a single caption
distilling all the given 20 descriptions. We found that the re-
sulting captions were very appropriate to the input objects,
and thus we directly used them for conditional generation.

-,
—

.

Figure 5. Linear interpolation between two 3DGS objects using
SuperUVGS representation.

LDMs [17, 41] use pretrained VAEs [12] to convert the
original image x € RH¥*"W*3 into a compact latent rep-
resentation z € RP*%X¢ where the forward and reverse
diffusion processes are applied [41]. The VAE decoder then
converts the compact latent representation back to pixels.
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Table 4. We compare the FID and KID of unconditional gener-
ation using the current SOTA methods on 20K randomly gener-
ated samples from each method and ours. We also compare our
method against SOTA text-conditioned generation frameworks on
CLIP Score for 10K generated objects from each method.

Unconditional Generation Text-Conditioned Generation

Method [FID | KID ||| Method CLIP Score 1
Get3D [14] 53.17 4.19 |||DreamGaussian [48] 28.51
DiffTF [3] 84.57 8.73 |||Shap. E [7] 30.53
EG3D [4] 74.51 6.62 |||[LGM [50] 30.74
GaussianCube |34.67 3.72 |||GaussianCube [61] 30.34
UVGS (Ours)|[26.20 3.24 ||[UVGS (Ours) 32.62

The objective function in latent diffusion model can be writ-
ten as:

Lrom = Eega)enno,1),e]]l€ — €0 (26, 8)|[3] (N

where, N(0, 1) is the Normal distribution, and ¢ is the

number of time steps and z; is the noisy sample after ¢ time
steps.

Training was done using AdamW optimizer with a learn-
ing rate of 1e —4 for 75 epochs on 8 x A100 (80G B) GPUs.

Once trained, we can randomly sample new high-quality
3DGS assets from the learned generative model.

To allow generation of objects from text, we also
trained a conditional LDM, where we use Stable Diffusion
(SD) [41] pipeline as it can use text prompt conditioning to
guide the image generation through cross-attention. Sim-
ilar to unconditional LDM, we use pretrained SD’s VAE
for mapping the Super UVGS image to a latent space and
back to the reconstructed Super UVGS. The text prompts
are given to a pretrained CLIP [37] text encoder to generate
a text embedding c; € R77*7%8 which is then passed to the
UNet encoder of SD for cross-attention. We used a set of
CLIP encoder and BLIP2 [21], and GPT4 [1] to generate
captions for our dataset. The overall objective function for
conditional LDM now becomes:

LEDM = Ee(m),ENN(O,l),t,ct [”6 — €p (Zt, ta Ct)H%] (8)

where, €4(+,t) is a time-conditional U-Net [42] model,
N(0,1) is the Normal distribution, z; is the latent code,
and c¢; is the text embedding. Training was done using
AdamW optimizer with a learning rate of le — 4 for 50
epochs on 8 x A100 (80GB) GPUs. Once trained, this
conditional LDM can use used to generate text-conditioned
Super UVGS images, which can later be mapped to high-
quality 3DGS objects.

4. Comparison with Baselines

We compare the generational capabilities of our method
against various conditional and unconditional SOTA 3D ob-
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ject generation method on ShapeNet-cars dataset. Specif-
ically, we used the methods using multiview rendering for
optimization, like DiffTF [3] and Get3D [14]. We also com-
pared our approach again the current SOTA methods try-
ing to give structural representation to Gaussians, includ-
ing GaussianCube [61] and TriplaneGaussian [69]. We also
compared against general purpose SOTA large 3D content
generation models like DreamGaussian [48], LGM [50],
and EG3D [4].

To compare the quality of our generation results, as a
standard practice, we use FID and KID for unconditional
generation, and Clip Score for text-conditioned genera-
tion. Table 2 quantitatively compares the unconditional and
conditional generation results of our method again various
SOTA methods. From this table, it can be seen that our
method performs a good job in unconditional generation of
good quality 3D assets. The main reason behind this is the
learned Super UVGS representation which not only main-
tains the appearance of the 3DGS object, but also serves as
a proxy for geometrical shape by encoding all the 3DGS at-
tributes into the same coherent feature space. Table 4 com-
pares the CLIP Score of our text-conditioned generation re-
sults and the current SOTA methods. The unconditional and
conditional qualitative comparison results are presented in
Fig. 7 and Fig. 6, respectively.
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Figure 6. Here we show more comparison of unconditional 3D asset generation on the cars category with SOTA methods. Figure shows
that DiffTF [3] produces low-quality, low-resolution cars lacking detail. While Get3D [14] achieve higher resolution, it suffers from 3D
inconsistency, numerous artifacts, and lack richness in 3D detail. Similar issues are found in GaussianCube [61] along with symmetric
inconsistency in the results. In contrast, our method generates high-quality, high-resolution objects that are 3D consistent with sharp,

well-defined edges. The top three rows show the unconditional generation results of our method using ShapeNet dataset, while the bottom
3 show from Objaverse dataset.
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Figure 7. Text-conditioned generation results on various baselines and the proposed method. Our method not only generates high-quality
assets for simpler objects, but also for complicated objects with intricate geometries like the wheel or the airplane.
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Figure 8. To show the effectiveness of proposed UVGS maps in capturing the intricacies of a complex real-world scene, we used a 12 layer
UV map to reconstruct the 3D scenes.
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